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Synthetic study on 13-oxyingenol: construction of the full
carbon framework
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Abstract—13-Oxyingenol is a diterpenoid isolated from Euphorbia kansui, and its derivatives have strong anti-HIV activity. We
achieved the construction of inside–outside framework of 13-oxyingenol by using ring-closing olefin metathesis.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Formal total synthesis of optically active ingenol by our
group.
13-oxyingenol (1) and ingenol (3) are diterpenoids iso-
lated from the plants of Euphorbia sp. (Fig. 1).1 They
and their analogs have interesting bioactivities such as
protein kinase C activation and anti-HIV activities.2

Particularly, 13-oxyingenol derivatives such as 2 have
strong anti-HIV activity. The structural features of inge-
nol and 13-oxyingenol are a high degree of oxygenation
and a highly strained inside–outside bicyclic ring system.
The molecular complexity of ingenol derivatives, in con-
junction with their potent biological activities, has made
them attractive synthetic targets. Several groups have
reported approaches to synthesize the ingenol skeleton.3

In 2002, Winkler et al. first achieved the total synthesis
of 3 by using the de Mayo reaction and subsequent frag-
mentation.4 The next year, Tanino–Kuwajima et al.
accomplished the total synthesis of 3 by using the tan-
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Figure 1. Structures of ingenol, 13-oxyingenol and its derivatives.
dem cyclization-rearrangement reaction.5 In 2004, we
reported the formal total synthesis of optically active
ingenol by using ring-closing olefin metathesis as a key
step (Scheme 1).6 Wood et al. have reported the total
synthesis of 3 by a similar metathesis strategy.7

A number of synthetic approaches to ingenol (3) have
been made as stated above. However, synthetic ap-
proaches to 13-oxyingenol derivatives have never been
reported so far. We planned the synthesis of 13-oxyinge-
nol (1) and its derivatives 2 by using our ring-closing ole-
fin metathesis strategy.

The starting point for this work was the construction of
the enone 9 (Scheme 2). Two hydroxy groups in 2-(4-
hydroxyphenyl)ethanol (4) were successively protected,
and the aromatic ring was reduced in Birch conditions
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Scheme 4. Reagents and conditions: (a) HFÆpyr., pyridine, THF, rt,
97%; (b) BrCH2Si(CH3)2Cl, Et3N, CH2Cl2, rt, 84%; (c) AIBN,
Bu3SnH, benzene, reflux, 91%; (d) 13, NaH, DMF, 100 �C, 67%; (e)
LiI, 2,6-lutidine, reflux, 66%; (f) PPTS, EtOH, 50 �C, 90%; (g) PPh3,
CCl4, reflux, 92%.
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Table 1. Study of spiro-cyclization
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Entry Base Solvent Temperature Time
(min)

Yield
(%)

16 17

1 Et3CONa
(3 equiv)a

Xylene rt!reflux 10 46 18

2 Et3CONa
(3 equiv)b

Xylene rt!reflux 10 72 2

a Et3CONa prepared from the alcohol and NaH in 60% mineral oil
(1:1) in xylene.

b Et3CONa prepared from the alcohol and oil free NaH (1:1) in xylene.
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Scheme 2. Reagents and conditions: (a) DHP, p-TsOHÆH2O, CH2Cl2,
rt, 70%; (b) TBSCl, imidazole, DMF, rt, 100%; (c) Li, liq. NH3, t-
BuOH, THF, �33 �C, 100%; (d) (CH3)2CBr2, n-BuLi, Et2O, �78 �C,
83%; (e) propylene glycol, 100 �C, 15 min, 86%; (f) DMP, CH2Cl2; (g)
NaClO2, NaH2PO4Æ2H2O, 2-methyl-2-butene, t-BuOH; (h)
TMSCHN2, MeOH, rt, 90% in three steps; (i) OsO4, NMO,
acetone–H2O, 86%; (j) Pb(OAc)4, benzene; (k) Ac2O, pyridine, rt,
74% in two steps.
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to give diene 5. Regioselective cyclopropanation8 of 5
and selective removal of the THP group9 gave an alco-
hol, which was transformed into methyl ester 6 by a
three-step sequence of reactions. Dihydroxylation of 6
gave diol 7.10 Oxidative cleavage of 7 by Pb(OAc)4

and a spontaneous intramolecular aldol reaction affor-
ded the seven-membered aldol 8 and the seven-mem-
bered enone 9. The former was converted into the
latter on acetylation.6

In the synthetic study of ingenol reported by Funk, the
methyl group can be introduced from the a face
of Funk’s keto ester stereoselectively (Scheme 3).11

However, in the case of 13-oxyingenol, the methyl group
was introduced from the b face of enone 9 exclusively,
maybe because of steric hindrance of the C-13 substitu-
ent.12 The corresponding hydroxy enone gave the same
result.

We next tried the stereoselective introduction of the C1
unit at C-11 by using intramolecular radical cyclization
of 11 to give silicon–tethered compound 12 (Scheme 4).
The TBS protecting group in 9 was removed in good
yield, and the resulting alcohol was reacted with bro-
momethyldimethylsilyl chloride to afford silyl ether 11.
Radical cyclization of 11 using AIBN and Bu3SnH gave
the desired compound 12 in good yield.13 This silicon–
tethered compound 12 enabled not only the introduc-
tion of the C1 unit from the a face in enone 9 but also
the suitable protection of the C-13 hydroxy group. Keto
ester 12 was alkylated with iodide 136 to give alkylated
compound 14. The methoxycarbonyl group of 14 was
removed by heating with lithium iodide to afford a
ketone.14 The THP group was removed, and the result-
ing allylic alcohol was converted into chloride 15.
Attempts toward the intramolecular spiro-cyclization
of 15 are summarized in Table 1. In our previous
reports,6 similar intramolecular spiro-cyclization was
carried out by Et3CONa in boiling xylene. Intramolecu-
lar spiro-cyclization of 15 under the same conditions
gave the desired ketone 16 (46%) and the undesired
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seven-membered ether 17 (18%) (entry 1). By use of oil-
free NaH (washed with n-hexane), efficient spiro-cycliza-
tion of 15 has been realized (entry 2).

The stereochemistry of 16 was determined by the
NOESY correlation between the allylic methine proton
and the C-11 methine proton (Fig. 2).

Methallylation of spiroketone 16 with LDA and methall-
yl iodide gave the desired ketone 18 as the sole product
(Scheme 5). The ring-closing olefin metathesis of 18 with
the second-generation Grubbs catalyst (20)15 provided
the desired pentacyclic ketone 19 in 86%.16 Another ole-
fin metathesis catalyst, second-generation Hoveyda–
Grubbs catalyst (21),17 was less effective in this case.

The stereochemistry of 19 was determined by the
NOESY correlations (Fig. 3). Thus, we achieved the
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Figure 3. Relative stereochemistry of 19.
construction of an inside–outside framework of 13-oxy-
ingenol by using ring-closing olefin metathesis as a key
step. Efforts toward the completion of the total synthesis
are currently under way.18
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